
 Page 1/6

A Model-Based Reference Workflow for the Development of
Safety-Critical Software

A. Michael Beine1

1: dSPACE GmbH, Rathenaustraße 26, 33102 Paderborn

Abstract: Model-based software development is
increasingly being used to develop software for
electronic control units (ECUs). The automatic
conversion of models into program code for ECUs
plays a major role in this because it ensures efficient
implementation, providing considerable savings
potential and short development cycles.

This paper introduces a model-based reference
workflow for the development of safety-critical
software conforming to relevant safety-standards
such as IEC 61508 and ISO 26262. The reference
workflow provides guidance for meeting the safety
requirements to develop software up to and including
SIL 3 and/or ASIL D.

Furthermore the paper shows how such a reference
workflow can help address the issue of software tool
qualification.

Keywords: Model-based development, Reference
workflow, Safety-critical systems, Safety standard,
ISO 26262, IEC 61508, DO-178B

1. Introduction

Model-based development and automatic code
generation have become increasingly established in
recent years. The automotive and aerospace
industry have widely adopted and successfully
deployed these methods in many different series
production programs worldwide. This brought
various benefits, such as a reduction in development
times, improved quality due to more precise
specifications, and early verification and validation
by means of simulation.

Model-based development is a general-purpose
development approach which can be applied to a
wide variety of applications. Safety-critical systems,
which are largely found in aerospace applications,
but also increasingly in the automotive industry,
impose special additional requirements on this
process. This leads to the question of how model-
based design and automatic production code
generation can be applied to the development of
safety-critical systems. In order to answer this
question the relevant safety standards need to be
consulted.

2. Safety Standards

2.1 Overview

Standards that apply to automotive software
development are IEC 61508 [1] and particularly the
new ISO 26262 [2]. IEC 61508 is a generic across-
the-industries standard that encourages the
derivation of industry-specific standards. It originated
in the process control automation industry, and
sector-specific standards were already derived for
the process industry (IEC 61511), nuclear power
plants (IEC 61513) and machinery (IEC 61513). The
new ISO 26262, which reached ISO Draft
International Standard (DIS) status in July 2009, is a
derivative that is especially tailored to the automotive
industry.

The US standard for developing airborne software is
RTCA DO-178B; the European equivalent is ED-
12B. IEC 61508 and DO-178B were published and
revised during the 1990s before model-based design
and automatic production code generation became
common development approaches. They can
therefore give little direct guidance on compliance
within a model-based development process. The
standards have therefore to be interpreted.

Aerospace industry and government experts are
working on DO-178C, which will specifically address
model-based development. The automotive industry
now has ISO 26262.

2.2 ISO 26262 and model-based development

ISO 26262 addresses and specifically covers model-
based development aspects, reflecting the
importance of this approach in automotive software
development today. The ISO 26262 part relevant to
model-based development is "Part 6: Product
development: software level". It contains a separate
chapter in the annex that describes the concept of
model-based development of in-vehicle software and
outlines its implications for product development at
the software level. The annex also details
differences between code-based and model-based
development. There are also several notes
throughout ISO/DIS 26262-6 directly referring to
specifics of model-based development. For example,
there are notes on software unit design and
implementation (ISO/DIS 26262-6, 8.5.1):

 Page 2/6

 NOTE In the case of model-based
development, the implementation model
specifies the software units in conjunction with
other techniques (see Table 8).

and notes on software unit testing (ISO/DIS 26262-6,
9.4.4)

 NOTE 2 In the case of model-based
development, software unit testing may be
moved to the model level using analogous
structural coverage metrics for models.

 NOTE 4 For model-based development,
software unit testing can be carried out at the
model level followed by back-to-back tests
between the model and the code. The back-to-
back tests are used to ensure that the behavior
of the models with regard to the test objectives is
equivalent to the automatically generated code.

3. Model-Based Reference Workflow

Compared to non-safety related software
development as well as compared to code-based
development, additional requirements and specifics
described in the relevant safety-standards have to
be met when developing safety-critical software. In
this situation a reference workflow can provide
guidance for meeting the safety requirements of ISO
26262, IEC 61508 or RTCA DO-178B in developing
software up to and including ASIL D, SIL 3 or Level
A respectively.

Based on best practices and experience from real-
world projects, and taking into account the safety
requirements from IEC 61508 and ISO 26262 –
including the ISO 26262 notes on model-based
development mentioned above – a reference
workflow for the model-based development of safety-
critical software has been prepared for the
established tool chain MATLAB® / Simulink® /
Stateflow® and TargetLink [3]. This reference
workflow describes model-based development
including automatic code generation and model-
based testing methods.

Figure 1: Elements of the model-based reference
workflow. Back-to-back testing between model and

code is the key element in code verification.

Figure 1 shows the general elements of processes
following this reference workflow. The outline
addresses design and implementation, as well as
appropriate testing and verification.

Textual requirements are designed and implemented
in an executable model, which then is itself
translated into code using code generation. Both
steps are covered by guidelines.

The step from textual requirements to a model ready
for code generation is verified by performing model
simulation and requirement-based testing, while the
generated code is verified against the model by
back-to-back testing, directly comparing the
functional behavior of the model and code. The test
execution of the model and the code includes
structural coverage measurement to assess the
completeness of the tests and to avoid unintended
functionality. The key element of this workflow is the
verification of the automatic conversion of the model
into ECU program code. In order to demonstrate that
the automatically generated code correctly
implements the model, the generated code must be
tested against the model by means of back-to-back
testing.

Figure 2: Elements of the reference workflow
mapped to the ISO 26262-6 reference phase model

for software development.

Many of the proposed methods are directly
recommended by the standards themselves. Figure
2 shows a rough mapping. Additionally, the
reference workflow contains detailed reference
tables that show how the methods and the overall
workflow map to IEC 61508 and ISO 26262. The
reference workflow has been approved by TÜV, an
independent German certification authority. Users
applying model-based development methods can
directly relate to the reference workflow and
demonstrate how the different aspects and methods
are followed in the safety-critical development
project. Deviations from the methods described in
this reference document are allowed as long as they
are justified and documented.

 Page 3/6

3.1 Requirements Traceability

Before software development itself can start, ISO
26262 requires the planning of the activities,
methods and measures used in the individual
subphases of software development, always with
reference to the ASIL of the system under
development. One important aspect to consider
already upfront is traceability of requirements.

Requirements traceability refers to the ability to
describe and follow the life of a requirement, in both
forwards and backwards directions [4]. The goal is to
track a requirement to its implementation and its
tests. Requirements traceability is helpful in
determining whether requirements have been
fulfilled and tested. The traceability of requirements
also helps ensure their completeness, by identifying
requirements that are not included in the model and
by identifying model parts that cannot be linked to a
requirement. The latter helps prevent the modeling
and implementation of unintended behavior. It also
facilitates the management of requirements
changes. Requirements-based development and
verification are stipulated by a number of software
and safety standards.

A major part of requirements traceability lies in the
modeling environment, which provides the
bidirectional, navigable links from external
requirements management tools to the model. In
order to achieve full traceability the code generator
must establish the links between the model as input
and the code as output. TargetLink as a code
generator provides links between the model and
code that also support the tracing of requirements,
for example by generating C code in HTML format
that includes hyperlinks to the model.

3.2 The Role of Guidelines

Another aspect to consider before software
development itself can start is the selection of
modeling and coding guidelines. ISO 26262-6
recommends the use of design and coding
guidelines for modeling as well as programming
languages. Guidelines describing good programming
style and avoiding unsafe language features should
be used in general, but particularly for safety-critical
applications.

Modeling guidelines – Modeling guidelines play an
important role in ensuring good design quality as
models progress from the initial function design to
the implementation model. Moreover, they can help
to achieve quality objectives with regard to the
functional safety of the generated code. There are
several well-established guideline documents for the
example tool chain MATLAB, Simulink, Stateflow
and TargetLink mentioned above:

 The MathWorks Automotive Advisory Board
guidelines (MAAB) [5], a collection of rules with

objectives such as increasing readability,
smoothening workflows, and enabling design for
verification and validation as well as for code
generation

 TargetLink modeling guidelines [6] that cover the
whole range from function development to
production code generation

 MISRA TargetLink guidelines for the application
of TargetLink in the context of automatic code
generation, or MISRA AC TL for short [7].

At the beginning of a project the guidelines to be
followed have to be defined. Guidelines from the
above standard guideline documents should be
selected. These can be supplemented by project-
specific guidelines, for example, special naming
conventions. A record must be made of which
guidelines are to be followed. Committing to
guidelines is only the first step. The second is to
ensure – and document – that they are being
followed. Rule-based guideline checkers help to
keep to the formally defined guidelines. Guideline
checkers are used to ensure and document that the
models used in the project comply with the modeling
guidelines. They can be applied early on in projects
and also allow large models to be checked
efficiently.

Coding guidelines – On code level, ISO 26262-6
specifically mentions MISRA C [8] as a suitable
standard for C. At the same time ISO 26262
acknowledges that guidelines for automatically
generated code and manual code can be different,
and MISRA itself specifically permits deviations from
the standard as long as they are well justified. A
comprehensive compliance document for TargetLink
is available as a supplement to the MISRA C
guidelines. This document describes in detail
whether a rule is always met, whether a rule is met
only if certain conditions are observed on model
level, whether the code generator can be configured
in order to comply with a rule, or whether a rule is
only partially fulfilled if it contains multiple code
requirements.

To demonstrate compliance on the code level in a
similar way to the model level, standard commercial
off-the-shelf MISRA C compliance checker tools can
be used. Those tools check not only the resulting
generated C code itself, but also any legacy or
handwritten code that is part of the model. When
static checking is performed on the generated code,
detected violations have to be compared to the
known and accepted violations of the code
generator.

3.3 Software Architecture Design

The software architecture design needs to consider
design principles such as modularity and
encapsulation, low complexity and maintainability,

 Page 4/6

and must be suitable for subsequent software unit
design and implementation. Modeling environments
such as Simulink support the hierarchical, modular
partitioning of models. Tools for measuring model
complexity on system and subsystem level provide
further help in achieving suitable module sizes. Code
generators such as TargetLink allow modularization
on code level by giving the user various means to
configure whether model parts should be realized as
separate functions, separate C code files, etc.
Incremental code generation allows even smaller
parts of the model to be coded separately with the
benefit that changes in other parts of the model do
not affect incrementally generated code that has
already been verified.

The elements described in the reference workflow
are intended to support modular development and
facilitate the verification of model parts and the code
generated from them. The basics of model and code
verification are not changed by applying these
software architecture considerations.

3.4 Model-Based Testing

The test process accompanying the model-based
development process – also referred to as model-
based testing – benefits from the existence of an
executable model and the simulation capabilities of
the modeling environment. Systematic use of those
simulation capabilities enables developers to
perform fast, simple checks on the results obtained
and on the modifications and adjustments made
during the development process.

Viewing the reference workflow from a testing and
verification perspective, the first significant activity is
to verify the model by demonstrating that it is correct,
meets its requirements and does not contain
unintended functionality. Model verification is mainly
done via simulation by performing functional,
requirements-based tests. Test cases that cover all
functional requirements have to be derived and
executed. Another option would be to apply formal
verification techniques. The second significant step
following model verification is to verify the generated
code by demonstrating that the behavior of the code
running on the ECU correctly implements the
behavior of the verified model and does not contain
any unintended functionality. This step ensures that
converting models into program code by means of
automatic code generation preserves its behavior
and does not introduce any errors. A valid method to
demonstrate this is performing back-to-back tests
between the simulation model and the generated
code.

Back-to-back testing means testing the model and
then testing the software using the same test cases
and scenarios on model and code level, and
comparing the results. All tests derived to verify the

model, the test cases specified to cover the
functional requirements and the test cases to
demonstrate structural coverage must be used in
back-to-back testing. The test stimuli are first applied
to the model (MIL simulation). The results obtained
serve as the reference. Then the same test stimuli
are used to execute the object code derived from the
generated code. The results of this execution are
compared to the reference results obtained during
model simulation.

Figure 3: Principle of back-to-back tests in model-
based development

The resulting object code should be executed in an
environment that matches as closely as possible the
ECU on which the code will be deployed. The actual
target compiler used in the project should be used to
translate the generated code. The resulting object
code should be executed on a platform, e.g., an
evaluation board, which contains the processor used
in the ECU. Processor-in-the-loop (PIL) simulation
offers such an environment.

The expressiveness of requirements-based and
back-to-back testing depends on the completeness
of the test cases. To evaluate the completeness of
the test cases, full coverage of the requirements is
necessary, and the structural coverage of the model
and code needs to be measured. Portions of a
model or code not covered by tests help reveal
weaknesses in the completeness of the tests and
detect unintended functionality in the model or code.

4. Software Tool Qualification

All relevant international functional safety standards,
including ISO 26262 and DO-178B, require evidence
of software tool suitability and recommend the use of
qualified tools.

One of the first questions that are often asked when
using model-based development and automatic code

 Page 5/6

generation for safety-critical application development
is the one about tool qualification: Is it possible to
use a non-certified, non-qualified tool for the
development of safety-critical software? The answer
is: Yes, that is common practice in the industry today
– for compilers, for linkers, and also for code
generators. TargetLink, for example, has been
successfully used for years in several safety-critical
projects in the automotive as well as in the
aerospace industry [10].

4.1 Tool Qualification and DO-178B

RTCA DO-178B clearly states that a qualified tool is
required only if there is no complete verification of
the tool’s output. More precisely, according to DO-
178B (12.2), tool qualification has to be performed
only if process steps described in DO-178B are
eliminated, reduced or automated.

DO-178B distinguishes between “development tools”
and “verification tools”. The major distinction criterion
is a tool’s direct impact on the software product. A
development tool’s output will be part of the airborne
software, and therefore errors introduced by that tool
introduce errors in the end product. A verification
tool’s output will not be part of the airborne software;
however, an error in a verification tool can lead to
non-detection of an error in the airborne software.

In a model-based development process the
controller code is produced by a code generator
which is clearly in the category of “development
tools”. Qualification of a development tool according
to DO-178B is an option that is rarely exercised
since it is not practical from a managerial point of
view and not easy from a technical point of view as
[12] explains.

The main advantages of using non-qualified
development tools are that it is possible to use patch
releases and new functionality without having to wait
for the requalification of patch versions, as well as
the fact that no additional tool costs (qualified tools
can be significantly more expensive) and no extra
tool qualification costs are associated with them [12].
Using a non-qualified code generator and applying a
standard-compliant software verification process in
order to verify the code generator output is an
attractive alternative. In this case, a DO-178B-
compliant, model-based reference workflow similar
to the one described in this paper is an argument in
favor of using a non-qualified code generator for
safety-critical software development.

Verification and validation in a model-based
development process to a large part rely on
automated testing. Since complete verification of the
test results is not practical, the use of a qualified
verification tool is advisable. In contrast to the
qualification of development tools, the qualification of
a software verification tool according to DO-178B is

almost common practice. Qualification criteria
according to DO-178B (12.2.2) are met by
“demonstrating that the tool complies with its Tool
Operational Requirements under normal operational
conditions”.

To fulfill this criterion, test suites that cover a tool’s
operational requirements and can be executed by
the user in the context of the development project
are available from tool vendors. This approach is
similar to but less demanding than the validation
suite approach explained below for qualification of a
test tool according to ISO 26262, where the reaction
of the tool under anomalous operation conditions, for
example, also needs to be examined.

4.2 Tool Qualification According to ISO 26262

In contrast to IEC 61508 or RTC DO-178B, where
tools are categorized by their nature and
independently of their use in a concrete project, ISO
26262 introduces a new method of tool classification
based on an analysis of a software tool's use case in
a concrete project. First, the impact of the tool is
determined by evaluating if a malfunctioning
software tool and its erroneous output can lead to a
violation of a safety requirement and thus to a failure
of the system that affects its functional safety.
Secondly, the degree of confidence that such a
malfunction or erroneous output can be prevented or
detected in the project is analyzed. The so-called
tool confidence level is determined from the impact
of the software tool and the tool error detection
probability. Then the necessary tool qualification
activities are derived from the tool confidence level
with reference to the criticality (ASIL) of the system.

If there is a high degree of confidence that a
malfunction or an erroneous output from the
software tool will be prevented or detected, i.e., if
there is a high tool confidence level, no additional
qualification measures are required. In all other
cases additional measures are required to
demonstrate that the software tool fulfills its use
cases with the required level of confidence. ISO
26262 suggests and details four possible methods:

 Increased confidence from use

 Evaluation of the development process

 Validation of the software tool

 Development in compliance with a safety
standard

Qualification of a code generation tool – The tool
impact of a code generator is TI1, meaning that an
error might indeed cause the violation of a safety
requirement. This requires the determination of the
tool error detection, which depends on the
development workflow ("tool use case") that is being

 Page 6/6

used. At this point the model-based reference
workflow introduced in this paper is very helpful.
According to the TÜV, following the model-based
reference workflow and its proposed verification and
validation activities provides a high degree of
confidence that a malfunction or erroneous output of
the code generator can be prevented or detected. In
this case the resulting tool confidence level is TCL1,
and tool qualification for the code generator can be
claimed without further tool qualification measures.

Qualification of a test tool – ISO/DIS 26262 explains
that the tool confidence level of a test tool can be the
same or even higher than the one of a code
generation tool. This is clearly shown by the typical
model-based development workflow. Since the
workflow heavily relies on model-based testing for
the verification of the model as well as the
verification of the generated ECU program code, the
use of an appropriate testing tool to support these
steps is crucial. If the test tool does not work
correctly and produces erroneous output, a possible
code generation error might not be detected. Since
there is typically no systematic verification of the
results in subsequent development phases, tool
error detection level TD4 has to be assumed. This
results in a low level of confidence as defined by ISO
26262, thus requiring additional measures to
establish a high degree of confidence in the correct
behavior of the test tool.

EmbeddedTester [9] is an example of a testing tool
that has been qualified for use in safety-critical
applications through a combination of validation of
the software tool and evaluation of the development
process, and thus is suitable up to and including
ASIL D. It supports model-based testing, including
back-to-back tests between model and code, as well
as measuring coverage to evaluate the
completeness of the tests used in the tool chain
referred to in this paper.

5. Conclusion

Following a standard-compliant and officially
approved reference workflow not only provides
guidance and orientation for the user, it also helps
demonstrate that the chosen development approach
and applied verification and validation measures
fulfill the requirements of the safety standards to
ensure a sufficient and acceptable level of safety.
For DO-178B projects, demonstrating that a software
verification process is standard-compliant allows the
use of non-qualified development tools such as a
code generator.

With regard to the automotive industry, the reference
workflow supports tool qualification according to ISO
26262. The reference workflow serves as a detailed

description of a development workflow as required
by ISO 26262. for the analysis of the software tool
use case in the project. In fact the TargetLink
reference workflow used as an example in this paper
was an important factor in the certification of
TargetLink for IEC 61508 and ISO/DIS 26262
applications by TÜV SÜD, a German certification
authority.

6. References

[1] Functional Safety of Electrical / Electronic /
Programmable Electronic Safety Related Systems,
IEC 61508, 1998

[2] Road vehicles – Functional Safety, International
Organization for Standardization, ISO 26262 (Draft
International Standard), 2009

[3] Model-Based Software Development for Safety-
Related Systems, TargetLink Reference Workflow,
Version 1.1, Michael Beine, 2010

[4] Gotel, O., and A. Finkelstein: “An Analysis of the
Requirements Traceability Problem”, Proceedings

of the First International Conference on
Requirements Engineering, Colorado Springs,
Colo., April 1994, pp. 94-101.

[5] The MathWorks Automotive Advisory Board,
Control Algorithm Modeling, Guidelines using
MATLAB®, Simulink®, and Stateflow®, Version
2.0, 2007

[6] Modeling Guidelines for MATLAB / Simulink /
Stateflow and TargetLink Version 2.1, dSPACE
GmbH, 2008

[7] MISRA AC TL: Modeling style guidelines for the
application of TargetLink in the context of automatic
code generation, 2007, Version 1.0

[8] MISRA-C: 2004 Guidelines for the use of the C
Language in critical systems, MIRA, 2004

[9] EmbeddedTester, http://www.btc-es.de/
[10] TargetLink - Driving the Future with Autocode,

dSPACE Magazine Special Edition, 2009
[11] Beine, Otterbach, Jungmann: “Development of

Safety-Critical Software Using Automatic Code
Generation”, SAE World Congress, 2004-01-0708,
2004

[12] Kornecki, Zalewski: “The Qualification of Software
Development Tools From the DO-178B Certification
Perspective”, Cross Talk – The Journal of Defense

Software Engineering, April 2006

7. Glossary

MIL: Model-in-the-Loop

PIL: Processor-in-the-Loop

ASIL: Automotive Safety Integrity Level

SIL: Safety Integrity Level

ECU: Electronic Control Unit

TI: Tool impact

TD: Tool error detection

TCL: Tool confidence level

http://www.btc-es.de/

